• Collision Theory

    Rate Comparisons

    Integrated Rate Law

    Differential Rate Law

  • Equilibrium

    Equilibrium Expression

    ICE Tables

    Calculating K

    K vs Q

    Le Chatelier's Principle

  • Definitions

    Conjugate Acids & Base Pairs

    Autoionization of water

    pH Scale

    Strong Acids/ Bases

    Ka and Kb

    Buffer

    Titrations

    Indicators

    pH salts

  • Entropy

    Gibb's Free Energy

    G and Temperature

  • Oxidation numbers

    Half Reactions

    Balancing Redox reactions

    Voltaic cells

    Cell potential (standard conditions)

    Cell potential (non-standard)

    Electrolysis

    Quantitative Electrochemistry

Maxwell-Boltzmann Distribution

Related Examples and Practice Problems

Additional Worked Out Examples/ Practice

  • Identifying classification types: Differentiation between elements, compounds or mixtures and homogeneous and heterogenous mixtures

  • Separation techniques: Selected and explaining limitation of appropriate separation

  • Relating Properties to Composition: Predicting classification based on descriptive properties

    and more …

Topic Summary & Highlights
and Help Videos

Core Concept

Maxwell-Boltzmann Distribution describes the range of speeds that gas particles can have at a given temperature. It provides insight into how molecular speed and energy vary among particles in a gas.

Key Concepts

  1. Distribution of Molecular Speeds:

    • Not all particles in a gas move at the same speed. Some move faster, and some slower, depending on factors like temperature and the mass of the gas particles.

    • The Maxwell-Boltzmann Distribution curve shows the range of speeds, with most particles clustering around a most probable speed.

  2. Temperature and Kinetic Energy:

    • Temperature directly affects the distribution of molecular speeds.

    • As temperature increases, the average speed and kinetic energy of particles increase, and the distribution curve flattens and shifts to the right (indicating higher speeds).

  3. Effect of Particle Mass:

    • Heavier gas particles move more slowly on average than lighter gas particles at the same temperature.

    • Lighter gases, like helium, have broader distributions and higher average speeds compared to heavier gases like xenon at the same temperature.

Maxwell-Boltzmann Distribution Curve

  1. Shape of the Curve:

    • The curve is asymmetrical, starting at the origin (0 speed, where no particles exist) and rising to a peak that represents the most probable speed.

    • The curve then tails off to the right, indicating a small number of particles with very high speeds.

  2. Key Points on the Curve:

    • Most Probable Speed ($u_{\text{mp}}$​): The speed at which the largest number of particles are moving. This is the peak of the distribution.

    • Average Speed ($u_{\text{avg}}$​): The mean speed of all particles, slightly to the right of the most probable speed.

    • Root Mean Square Speed ($u_{\text{rms}}$​): A statistical measure of the speed of particles, even farther to the right. It takes into account the square of particle speeds.

    Typically, these speeds relate as follows:

    $u_{\text{mp}} < u_{\text{avg}} < u_{\text{rms}}$

  3. Effect of Temperature on the Curve:

    • At higher temperatures, the curve becomes broader and flatter, shifting to the right. This shows that more particles have higher speeds.

    • At lower temperatures, the curve is narrower and steeper, with more particles near the most probable speed.

Maxwell-Boltzmann Equation (Advanced Concept)

The Maxwell-Boltzmann distribution of speeds in a gas can be described mathematically (optional for AP Chemistry):

$f(u) = 4 \pi \left( \frac{m}{2 \pi k T} \right)^{3/2} u^2 e^{-\frac{mu^2}{2kT}}$f

Where:

  • f(u) is the fraction of particles with speed u.

  • m is the mass of a gas particle.

  • k is the Boltzmann constant (1.38×10−23J/K).

  • T is the temperature in Kelvin.

This equation is not necessary to memorize but helps to understand that speed distribution depends on particle mass and temperature.

Visualizing the Maxwell-Boltzmann Distribution Curve

  1. Comparing Temperatures:

    • For the same gas, a distribution curve at a higher temperature is broader and flatter, indicating a greater range of particle speeds.

  2. Comparing Gases at the Same Temperature:

    • Lighter gases have a wider distribution (more particles with high speeds) than heavier gases, which have a narrower distribution.

Important Points to Remember

  1. Most Particles Are Near the Most Probable Speed: While some particles are moving very slowly and others very fast, most are near the most probable speed.

  2. Temperature’s Impact: Increasing temperature shifts the distribution curve to the right and flattens it, increasing the number of fast-moving particles.

  3. Mass Matters: At the same temperature, lighter gas particles have a broader distribution and move faster on average than heavier gas particles.

 LABORATORY 

Video Resources