-
-
-
-
Molarity
Preparing a solution
Dilution
Solubility rules
Complete & Net Ionic Equations
Colligative properties
-
Heat Flow
Energy diagrams
Thermochemical equations
Heating/ Cooling curves
Specific Heat Capacity
Calorimetry
Hess's Law
Enthalpies of formation
Bond enthalpies
-
Collision Theory
Rate Comparisons
Integrated Rate Law
Differential Rate Law
-
Equilibrium
Equilibrium Expression
ICE Tables
Calculating K
K vs Q
Le Chatelier's Principle
-
Definitions
Conjugate Acids & Base Pairs
Autoionization of water
pH Scale
Strong Acids/ Bases
Ka and Kb
Buffer
Titrations
Indicators
pH salts
-
Entropy
Gibb's Free Energy
G and Temperature
-
Oxidation numbers
Half Reactions
Balancing Redox reactions
Voltaic cells
Cell potential (standard conditions)
Cell potential (non-standard)
Electrolysis
Quantitative Electrochemistry
Units
Related Examples and Practice Problems
Additional Worked Out Examples/ Practice
Density calculations: Practice using the density formula
Density comparisons: Comparing the densities to determine which will float or sink
Density and volume relationships: Changes in mass or volume affect density
Density and temperature relationships: Impact of temperature on density
View problems here.
Topic Summary & Highlights
and Help Videos
Core Concept
Units provide a standardized framework to express quantities and ensure that measurements are consistent, comparable, and easily understood.
Various types of units are used to represent different types of quantities. Some commonly used units include:
SI Units: The International System of Units (SI) is the most widely used system of measurement in science, including chemistry. It provides a standardized set of units for fundamental quantities such as length (meter, m), mass (kilogram, kg), time (second, s), temperature (kelvin, K), amount of substance (mole, mol), and more.
Derived Units: Derived units are formed by combining base units. For example, volume is derived from the base unit of length, resulting in units such as cubic meter (m³) or liter (L). Other derived units in chemistry include molar concentration (mol/L or M), velocity (m/s), energy (joule, J), and pressure (pascal, Pa), among others.
Metric Prefixes: Metric prefixes are used to indicate decimal multiples or submultiples of a unit. For example, kilo- (k) represents a factor of 1000, so 1 kilogram (kg) is equal to 1000 grams (g). Similarly, milli- (m) represents a factor of 0.001, so 1 milliliter (mL) is equal to 0.001 liters (L).