• Collision Theory

    Rate Comparisons

    Integrated Rate Law

    Differential Rate Law

  • Equilibrium

    Equilibrium Expression

    ICE Tables

    Calculating K

    K vs Q

    Le Chatelier's Principle

  • Definitions

    Conjugate Acids & Base Pairs

    Autoionization of water

    pH Scale

    Strong Acids/ Bases

    Ka and Kb

    Buffer

    Titrations

    Indicators

    pH salts

  • Entropy

    Gibb's Free Energy

    G and Temperature

  • Oxidation numbers

    Half Reactions

    Balancing Redox reactions

    Voltaic cells

    Cell potential (standard conditions)

    Cell potential (non-standard)

    Electrolysis

    Quantitative Electrochemistry

Empirical Formula

Related Examples and Practice Problems

Additional Worked Out Examples/ Practice

  • Identifying classification types: Differentiation between elements, compounds or mixtures and homogeneous and heterogenous mixtures

  • Separation techniques: Selected and explaining limitation of appropriate separation

  • Relating Properties to Composition: Predicting classification based on descriptive properties

    and more …

Topic Summary & Highlights
and Help Videos

Core Concept

The empirical formula of a compound represents the simplest whole-number ratio of the elements within it. Unlike the molecular formula, which shows the exact number of each atom in a molecule, the empirical formula shows only the smallest ratio of elements.

Steps to Determine an Empirical Formula

  1. Obtain the Masses of Each Element (from experimental data or percent composition):

    • If given percentages, assume you have a 100 g sample (so percentages convert directly to grams).

  2. Convert Masses to Moles:

    • Use the atomic mass of each element to convert grams to moles.

    Moles of element=Mass of element (g)Atomic mass of element (g/mol)\text{Moles of element} = \frac{\text{Mass of element (g)}}{\text{Atomic mass of element (g/mol)}}Moles of element=Atomic mass of element (g/mol)Mass of element (g)​

  3. Determine the Simplest Whole-Number Ratio:

    • Divide each element’s mole value by the smallest number of moles calculated for any element.

    • If the result is close to a whole number, round to the nearest whole number.

  4. Adjust Ratios if Necessary:

    • If any ratios are not whole numbers (e.g., 1.5, 2.5), multiply all ratios by a common factor to obtain whole numbers.

  5. Write the Empirical Formula:

    • Use the whole-number ratios as subscripts in the formula.

Empirical Formula Steps Table
Step Example Application (40.0% C, 6.7% H, 53.3% O)
1. Obtain the Masses of Each Element Assume a 100 g sample. Convert percentages to grams:
- Carbon: 40.0 g
- Hydrogen: 6.7 g
- Oxygen: 53.3 g
2. Convert Masses to Moles Use atomic masses to convert grams to moles:
- Carbon: \( \frac{40.0 \, \text{g}}{12.01 \, \text{g/mol}} = 3.33 \, \text{mol} \)
- Hydrogen: \( \frac{6.7 \, \text{g}}{1.01 \, \text{g/mol}} = 6.63 \, \text{mol} \)
- Oxygen: \( \frac{53.3 \, \text{g}}{16.00 \, \text{g/mol}} = 3.33 \, \text{mol} \)
3. Determine the Simplest Whole-Number Ratio Divide each mole value by the smallest number of moles:
- Carbon: \( 3.33 / 3.33 = 1 \)
- Hydrogen: \( 6.63 / 3.33 \approx 2 \)
- Oxygen: \( 3.33 / 3.33 = 1 \)
4. Adjust Ratios if Necessary Ratios are whole numbers (1:2:1), so no adjustment needed.
5. Write the Empirical Formula The empirical formula is CH₂O.
 LABORATORY 

 DEMONSTRATIONS 

 ACTIVITIES 

 VIRTUAL SIMULATIONS 

Video Resources